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The role of substance P (SP) in physiological haematopoiesis is
well established. However, it also seems to be important in the
neoplastic transformation of bone marrow, leading to the
development of acute leukaemia in children, and also
metastases to bone marrow of solid tumours (particularly
neuroblastoma and breast cancer) in early stages of these
diseases. This review summarises the available data on SP
involvement in both processes. In the future, SP antagonists may
be used as anti-neoplastic drugs, for example by direct or
indirect blocking of tumour cell proliferation through inhibition
of growth factor production and interleukin-1b synthesis.
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S
tudies on bone marrow (BM) innervation
have a long history,1 and even though the
presence of nerves in BM has been sufficiently

well documented, the significance of substances
released by the nerves during haematopoiesis
remains unclear. In general, nerve fibres are
provided to bones from an appropriate branch of
the spinal nerve supplying a given region of the
body. They include both extraganglionic sympa-
thetic fibres and afferent sensory fibres originating
from spinal ganglia. The classical and still referred
to studies of de Castro2 showed that the nerves
penetrate the BM cavity in common with the
nutrient artery, split into branches and follow bone
marrow arterioles, entwining them in the form of a
dense network. A more complete illustration of
BM innervation and relations between nerve
endings and microelements of the BM environ-
ment was presented by Yamazaki and Allen.3 As
many as 61.5% of myelinated fibres were found to
terminate between cells of arterial adventitia,
37.8% between haematopoietic cells and only
0.7% on cells forming BM sinuses. The signifi-
cantly more numerous non-myelinated fibres most
frequently terminate between adventitial cells
(66.9%), on smooth muscle cells forming walls of
BM blood vessels (4.9%), on cells forming BM
sinuses (9.7%), and directly between BM cells
(18.5%). This indicates that substances released
from nerve endings may participate in formation
of the haematopoietic microenvironment.

The most richly represented nerve endings in
BM include those which release substance P (SP)
and calcitonin-gene related peptide.4 Others,
which are less frequent in BM nerve endings,
release neuropeptide Y and vasoactive intestinal
peptide.5

HAEMATOPOIESIS
There are at least two stem cells in adult BM: the
haematopoietic stem cell (HSC) and the mesench-
ymal stem cell (MSC).6 7 The major function of
HSC, which is typical also for most of the studied
stem cells, is continuous replacement of all cells
which constitute the immune and blood systems.
The process known as haematopoiesis involves
multidirectional regulations among haematopoie-
tic cells, BM stromal cells and nerve endings.7

HSCs are found in the low-oxygen areas of BM,
close to the endosteum.8 MSCs are located in the
inner region of blood vessels.9 Despite the anato-
mical distance between HSCs and MSCs, these two
stem cells are functionally interconnected since
MSCs are the source of the supporting stromal
cells.10 11

Haematopoiesis within the BM microenviron-
ment depends on multidirectional stimuli.12

Cellular responses cause production of soluble
factors such as cytokines, chemokines, neuro-
trophic factors and neuropeptides.13 Innervation
of the BM with peptidergic, including SP, and
sympathetic fibres14–17 suggests that the functions,
and possibly the properties of HSCs could be
influenced by the neural system. However, homo-
eostasis in the haematopoietic system is attained
by multiple intracellular pathways triggered by
receptors and their respective ligands. One group is
composed of neurokinin receptors (NK-Rs) and
neurotransmitters belonging to the tachykinin
family of peptides.18 19

TACHYKININS
Neuropeptides belonging to the tachykinin family
are encoded by three genes, namely TAC1, TAC3
and TAC4 (known previously as PPT-A, PPT-B and
PPT-C belonging to the preprotachykinin (PPT)
gene family).20 The tachykinins are mostly 10–12-
amino acid peptides that present a common
carboxyl terminus, Phe–X–Gly–Leu–Met–NH2,
where X is either an aromatic or branched aliphatic
residue.21 TAC1 encodes two of the most studied
tachykinins, SP and neurokinin (NK)-A.21 SP and
NK-A are 11- and 10-amino acid peptides, respec-
tively. PPT-A comprises seven exons, which can be
alternately spliced and modified to form four
transcripts: a, b, c, and d. SP is encoded by exon 3,

Abbreviations: ALL, acute lymphocytic leukaemia; BM,
bone marrow; G-CSF, granulocyte colony stimulating
factor; GM-CSF, granulocyte monocyte colony stimulating
factor; HK, haemokinin; HSC, haematopoietic stem cell; IL,
interleukin; MSC, mesenchymal stem cell; NK, neurokinin;
NK-R, neurokinin receptor; PPT, preprotachykinin; SCF,
stem cell factor; SP, substance P
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present in each transcript, and NK-A is encoded by exon 6,
present only in transcripts b and c.21 TAC1 gene is expressed in
neural (peripheral and central) and non-neural tissues, BM,
and immune cells.22 23 TAC3 has seven exons, with exon 5
encoding nerokinin B (NK-B)20; it is expressed in the brain and
in peripheral tissues.21 TAC4 gene produces haemokinin 1 (HK-
1), expressed in haematopoietic cells.17 24 25 It appears that HK-1
is distinctively expressed outside the neural system and has a
prominent role in the regulation of lymphopoiesis.25 It is
encoded by exon 2, found in each transcript.21 Finally, C14TLK-1
gene gives origin to endokinins A and B, expressed in heart,
liver and placenta.26

Traditionally, neurons have been identified as the major
source of SP, NK-A and NK-B, but now it is well established
that tachykinins and their receptors are expressed in the
cardiovascular system, salivary gland, skin, muscles, respiratory
system, digestive tract, genitourinary tracts, thyroid gland and
immune system.25–28 Because of such diffuse expression and
regulation of disparate physiological functions, tachykinins can
also be implicated in the pathogenesis of many diseases,
including neoplasms.

TACHYKININ RECEPTOR SUBTYPES
The tachykinins interact with three natural tachykinin (neuro-
kinin) receptors: NK-1R, NK-2R, and NK-3R.13 They belong to
the family of 7-transmembrane, G-protein coupled receptors.20

SP and HK-1 exhibit binding preference for NK-1R, whereas
NK-A show binding preferences for NK-2R.21 29 The tachykinins
can, however, interact with weak binding affinity to other NK-
Rs.9 NK-Rs are widely expressed in neural and non-neural
systems. BM stroma, immune, and haematopoietic cells also
express NK-Rs.13 20

SUBSTANCE P AND ITS SIGNIFICANCE IN
PHYSIOLOGICAL HAEMATOPOIESIS
Substance P (H–Arg–Pro–Lys–Pro–Gln–Gln–Phe–Phe–Gly–Leu–
Met–NH2) shows wide distribution in the nervous system, in
which it plays the role of a neuromediator.30 31 Outside the
central nervous system SP is antidromally released from
sensory nerve endings of C type nerve fibres32 33 in response to
mechanical, chemical, and thermal insults as well as in
response to factors released at sites of tissue injury.33–37

According to several authors, the presence of peptidergic
nerve endings in the closest vicinity of immunocompetent cells
in organs most exposed to contact with foreign antigens
represents an anatomical exponent of functional links between
the mentioned fibres and cells and, more generally, between
nervous system and immune system.38–40

In humans, receptors for SP can be demonstrated on around
40% of peripheral blood lymphocytes.36 Compared to mature
lymphocytes, lymphoblasts carry around 3–4-fold higher
amounts of receptors for SP.41 Apart from lymphocytes,
receptors for SP are also found on monocytes,42 endothelial
cells,43 fibroblasts44 and haematopoietic cells.45 Substance P
augments proliferative activity of human and mouse T
lymphocytes,46 47 human smooth muscle cells,48 mouse fibro-
blasts,49 fibroblasts of human skin,44 smooth muscle fibres of
arterial walls,50 human synovial cells51 and human cells forming
colonies of granulocytes and monocytes or of erythrocytes.52

SP stimulates production of cytokines such as interleukin-1
(IL),53 54 IL-2,36 55 IL-3, IL-6, tumour necrosis factor-a,51 inter-
feron-c,56 granulocyte monocyte colony stimulating factor (GM-
CSF) and stem cell factor (SCF).55 It may intensify expression of
adhesion molecules, i.e. intercellular adhesion molecule 1,
which promote implantation of grafted haematopoietic cells.57

Due to the presence in BM peptidergic nerve endings, SP has an
easy access both to haematopoietic cells and to cells forming

sublayers of BM.58 Earlier studies showed that SP is also
released in BM from macrophages,59 eosinophils60 61 and cells of
vascular endothelium.62 Most of cells present in BM, i.e.
haematopoietic cells52 and cells forming BM stroma,44 63 as well
as lymphocytes present there, particularly T lymphocytes,64 are
equipped with the SP-specific receptor, NK-1R. Tested in short
term cultures of human BM in methylcellulose, SP alone was
shown to support haematopoiesis in vitro.52 The authors
showed that SP, at a concentration of 10211–1028 mol/l could
substitute for IL-3, granulocyte colony stimulating factor (G-
CSF) and GM-CSF, the presence of which was indispensable for
growth of colonies. On the other hand, substance P could not
substitute for erythropoietin although, when added together, it
augmented activity of the latter. Specificity of this stimulatory
action of SP was confirmed by administering it together with
blockers of the known subtypes of SP receptor. Such a parallel
administration of SP and a blocker for a subtype of NK-1R
receptor yielded results at the control level. However, blocking
of the NK-2R receptor had no effect on SP activity.45 SP was also
found to affect haematopoietic cells in an indirect manner, i.e.
through the stromal cells, stimulating their production of
cytokines. Supplementation of SP-stimulated cultures with
antibodies specific for IL-1, IL-3, IL-6 and GM-CSF resulted in
partial inhibition of cell growth, proving that SP can act
through the induction of the cytokine synthesis. SP also
induces synthesis of IL-1 and SCF in BM stromal cells.65

Cytokines linked to the haematopoietic functions of SP
include IL-1, IL-3, GM-CSF and SCF.23 SP induces production of
these cytokines, which exhibit stimulatory effects on haema-
topoiesis. Alternatively, the cytokines induced by SP could
activate BM cells through an autocrine and/or paracrine
mechanism to produce other cytokines with haematopoiesis-
stimulatory effects.66 For example, SP induces the production of
IL-1, which stimulates the induction of haematopoietic factors
with direct and indirect effects on HSCs.66 In contrast to SP, the
haematopoietic effects of NK-A could be stimulatory or
inhibitory, depending on the particular haematopoietic line-
age.52 67 NK-A inhibits the proliferation of granulocyte-mono-
cyte progenitors, but stimulates erythrocyte progenitors.58 The
negative functions of NK-A can be explained by the production
of haematopoietic suppressors, macrophage inflammatory
protein 1a and transforming growth factor b.23

SP has been shown to be involved in haemorrhagic shock, a
time at which the replacement of blood and immune cells68 69 is
urgently needed. During haemorrhagic shock, SP exhibits
functional pleiotropism so as to maintain a balance in
haematopoiesis. Hypoxia, which is linked to haemorrhagic
shock, activates the transcription of hypoxia-inducible factor
1a, which interacts with the PPT-1 promoter to induce its
expression.68

The induction of SP stimulates haematopoiesis so as to
replace immune and blood cells.68 69 During the period of
haemorrhagic shock, SP also acts as an anti-apoptotic factor so
as to protect BM cells from the insults caused by acute lowering
of oxygen in the BM.68

SP is inactivated by the neutral endopeptidase of renal brush
border.70 Activity of the enzyme was also shown on the surface
of neutrophiles,71 lymphocytes,72 enterocytes,73 fibroblasts74 and
endothelial cells.75

Moreover, SP is believed to have an essential role as a modulator
of synaptic transmission in sympathetic nerve fibres.76 However,
the sympathetic nervous system regulates the egress of stem and
progenitor cells from their niche in BM.77 This was shown in a
model study using UDP-galactose ceramide galoctosyltransferase-
deficient mice, which exhibited aberrant nerve conduction and
displayed no stem and progenitor cells escape from BM following
G-CSF administration. These results also raise the interesting
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possibility that SP-derived alterations in sympathetic tone may
explain the variability in mobilisation efficiencies among normal
donors78; modulation of sympathetic outflow to the stem cell
niche represents a novel strategy to increase the efficiency of
haematopoietic stem and progenitor cell harvests for stem cell-
based therapeutics.77 Figure 1 summarises the data presented
above.

RELATION OF SP TO NK-A AND HAEMOKININ-1 IN
HAEMATOPOIESIS
In normal haematopoiesis, SP and NK-A, through the produc-
tion of distinct cytokines, exert opposite effects with respect to
proliferation of haematopoietic progenitors. The negative
effects of NK-A on proliferation of BM progenitors suggest
that NK-A might be protective to HSCs.65 A protective role for
NK-A is construed based on the predominant types of TAC1
transcripts found in normal BM cells and in leukaemia cells.
Normal BM stromal cells express transcript b, while leukaemic
cells express only transcript a. While the former is capable of
producing both NK-A and SP, the latter can only produce SP.
This suggests that SP and NK-A might be able to regulate the
proliferation of HSC through autocrine and/or paracrine
mechanisms. Such a regulatory mechanism might not be
possible in leukaemic cells, which produce only SP.79–81 This
argument is supported by reports showing an autocrine role for
SP in proliferation of basophilic leukaemia cells.82

HK-1 has been also implicated in haematopoiesis.25 A link
between HK-1 and tachykinins derived from the TAC1 gene is
currently unclear. HK-1 regulates B and T lymphopoiesis25 83

and directly affects the transition from pro-B to pre-B cells.25

HK-1 promotes the survival and expansion of B cell lineage84–86

and similarly facilitates T cell development at specific stages.16

Regulation of the PPT-1 gene and/or functions of TAC1 peptides
could be altered, leading to BM disruption.

SUBSTANCE P AND MALIGNANT HAEMATOPOIESIS
Physiological haematopoiesis could be displaced by malignant
tumours developing in BM. Neoplastic cells present there can
originate directly from BM progenitors (leukaemia) or might be
derived from metastatic cells of different solid tumours.
Substance P plays an important role in pathogenesis of both
groups of diseases.

Leukaemia
The leukaemic process involves abnormal differentiation and
proliferation of neoplastically transformed stem cells. The cells
infiltrate BM, leading to inhibited growth and differentiation of
the remaining normal stem cells. The clinical signs reflect
anaemia, leucopenia, low blood platelet level as well as
involvement of tissues other than BM by the neoplastic process.
Leukaemia can affect almost every organ, but lymph nodes,
spleen, liver, central nervous system and skin in particular.
Traditional classification of acute leukaemia was mainly based
on morphological traits of cells examined by light microscopy.
Subsequently, cytochemical and cytogenetic techniques were
introduced; recently the armamentarium of techniques sup-
porting morphological classification has been enriched by
immunology and molecular biology. Since the control processes
of normal haematopoiesis involve several pathways and several
aspects, it is not easy to select a single in vivo factor, in this case
SP, and to directly prove its significance for pathogenesis of
acute leukaemia. However, the agent may play role in the
pathogenesis of leukaemia since it is involved in the physio-
logical control of haematopoiesis. The suggestion has been
confirmed by results of the above mentioned studies on
expression of TAC1 transcripts.

An attempt was first made to clarify such a potential by
monitoring the fate of patients in whom acute lymphoblastic

leukaemia was diagnosed; SP expression was determined in
blast cells, at the level of respective mRNA (classical in situ
hybridisation) and the protein (immunocytochemistry). It was
shown that in children diagnosed with acute lymphoblastic
leukaemia of the B cell line phenotype, who were in the low risk
group, expression of SP in blast cells before the start of
treatment (and before introducing steroids in particular)
represented an unfavourable prognostic index.79 These children
had a higher number of relapses, compared to children in the
low risk group who showed no SP expression.

In the high risk group, the original expression of SP on BM
blast cells had no prognostic significance. Interestingly, the
expression of SP, in both high and low risk groups, showed no
relationship to the risk of death resulting from progression of
the disease. However, this might be explained by parallel
involvement of several other variables, which together could
result in death of the patients. Therefore, it proved impossible
to select SP as the dominating factor.79

Similar results were obtained by De Giorgio et al.87 Using flow
cytometry, they estimated a strong SP immunoreactivity in
lymphocyte-like cells derived from patients with acute non-
lymphoblastic leukaemia, chronic myeloid leukaemia and B-
chronic lymphoblastic leukaemia. In comparison to these
neoplastically transformed cells, normal lymphocytes were, in
general, negative or weakly positive for SP, suggesting that SP
expression in neoplastic cells may be indicative of their
activation state. Moreover, expression of SP in these types of
leukaemia also indicated an unfavourable prognosis.

In our preliminary, not yet published studies, experimental 2-
hour incubation of blast cells with an SP agonist was found to
result in a significant increase of IL-1b concentration in BM
sampled from children with acute lymphocytic leukaemia
(ALL) who showed no SP expression in leukaemic cells.
Incubation of the cells with an SP antagonist (spantide)
resulted in control levels of IL-1b. However, in children with
ALL and original expression of SP in blast cells, incubation of
leukaemic cells with an SP agonist decreased by half the
original IL-1b concentration. A similar concentration was
obtained following incubation of the cells with spantide. The
IL-1b concentration in the supernatant of the incubated cells
from SP-positive children was twofold higher than that from
SP-negative children. This might suggest that SP indirectly
stimulated proliferation of leukaemic cells by enhancement of
IL-1b synthesis in the cells. It should also be stressed that the
phenomenon was observed within a relatively narrow range of
SP concentrations of 10210 to 1028 mol/l.

Thus, the correlation between the original expression of SP in
BM blast cells on the one hand and relapse of the disease in
children in the low risk group on the other might suggest that
SP is involved in the pathogenesis of acute lymphoblastic
leukaemia in children. We have thus decided to also define SP
expression in cases of bone marrow hypoplasia.

Bone marrow hypoplasia
BM hypoplasia appears as a morphological equivalent of
clinically diagnosed haematopoietic insufficiency.88 It is defined
by the following laboratory values: haemoglobin ,8.5 g/dl,
mean corpuscular volume ,88 fl, white blood cell count
,2.0 g/l with neutrophil count ,1.0 g/l, platelet count ,50 g/l
and reticulocytes ,0.1%.88 89 BM aspirate reveals hypocellular-
ity. Transient BM hypoplasia is usually caused by infections
(both viral and bacterial) or by different chemical (including
iatrogenic) and/or physical factors.90 91 Inherited aplastic anae-
mia, or BM hypoplasia prior to the presence of non-
haematopoietic tissue in BM (i.e., neuroblastoma metastases
in BM), is a much more rare phenomenon. A considerable
number of cases of BM hypoplasia may be subject to
spontaneous remission and may not even be recognised. The
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first hospitalisation of a child with BM hypoplasia usually takes
place after two or more ineffective courses of antibiotic therapy
(for some undiagnosed chronic infection), followed by symp-
toms of anaemia and thrombocytopenia. In such cases BM

hypoplasia can evolve into myelodysplastic syndrome, severe
aplastic anaemia or neoplasia. Establishing the correct diag-
nosis usually requires several weeks during which the affected
children are not treated but are monitored (laboratory evaluation

Figure 1 Diagrammatic representation of substance P (SP) effects on haematopoiesis and solid tumour metastases in bone marrow (BM). 1, Stimulation of
BM pluripotent haematopoietic cells for self-renewal by release of stem cell factor.55 2, 4, 6–8, The potent role of SP in substitution of IL-3, G-CSF and GM-
CSF in experimental studies.52 3, 5, Stimulatory effect of SP on proliferation of BFU-E, CFU-E and CFU-GM.52 96 9, Autostimulatory effect of SP on
proliferation of neoplastically transformed lymphoblasts in acute leukaemia.41 79 80 10, SP augments proliferation of T lymphocytes.46 47 11, SP induces
formation and homing of neuroblastoma and breast cancer metastases in bone marrow by autostimulation or direct influence of stromal cells.97–108 CFU-GM,
colony forming unit, granulocyte monocyte; CFU-Meg, colony forming unit megakaryocyte; CFU-E, colony forming unit erythroblast; BFU-E, burst forming
unit erythroblast; IL, interleukin; G-CSF, granulocyte colony stimulating factor; GM-CSF, granulocyte monocyte colony stimulating factor.
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of peripheral blood, BM, chest radiographs, etc) at least once a
month.

BM hypoplasia is not a malignant disease, but because of its
close relation to the development of different types of acute
leukaemia, could be regarded as a pre-neoplastic disorder.
Acute leukaemia of either a lymphoblastic or non-lymphoblas-
tic type that subsequently evolves into BM hypoplasia used to
have a poor prognosis.88 This may, at least in part, result from
late introduction of a chemotherapy regimen. It is obvious that,
in cases of neoplastic transformation, the type of chemotherapy
used will depend on precise recognition of the tumour in
question. Such treatment, however, could probably be intro-
duced much earlier if expression of certain markers of early
neoplastic transformation could be detected. The current
obstacle is that the full list of possible markers is not universally
accepted. However, some authors emphasise the fact that
several of the cytokines that regulate physiological haemato-
poiesis may themselves represent potential risk factors of
neoplastic transformation in BM hypoplasia.31 32 The search for
causes and aids to the diagnosis of BM hypoplasia involves
taking a thorough history, a detailed physical examination and
a number of laboratory tests, including microscopic analysis of
BM, sampled by needle biopsy or during surgery, tests for
infectious diseases and, occasionally, genetic studies on the
patient and his/her family. Application of immunocytochemical
techniques in the diagnosis of BM hypoplasia has already been
tested.92 However, attempts to use this technique have been
restricted to differentiation of myelodysplastic syndromes from
various grades of BM aplasia.92–94 Among others, Ki67 antigen
and proliferating cell nuclear antigen have been shown to be
useful for the purpose.94 In patients with BM aplasia, the
markers could not be shown in nucleated cells, while in
myelodysplastic syndromes the percentage of immunopositive
cells has ranged from 20% to 60%.94 These studies, however,
have not attempted to determine the future trend of such BM
hypoplastic lesions. Our selection of SP as an indicator of the
potential trend of BM hypoplasia evolution was prompted by
elucidation of its role, and the role of other neuropeptides, in
the physiological control of haematopoiesis.

Our studies performed on BM of healthy individuals (who
formed the control group) showed that the immunocytochem-
ical expression of peripherally located SP (most probably
coupled to NK-1R) on nucleated cells of the BM involved a
5% or lower fraction of the cells.79 80 The results prompted us to
perform analogous phenotyping of the material sampled from
patients with clinical symptoms of BM hypoplasia.95 In some,
the proportion of SP-positive cells among all nucleated cells
amounted to 67.6–95.8% (mean 81.5% cells for immunocyto-
chemistry and 84.3% with in situ hybridisation) in the absence
of neoplastic cells. Subsequent observation of these patients
showed that they developed a proliferative disease of the BM.
Throughout the time which preceded the neoplastic transfor-
mation, an increased number of SP-positive cells was noted,
although the proportion of Ki67-positive cells was similar to
control values. The neoplastic transformation was manifested
by the appearance in BM of poorly differentiated cells with a
positive reaction for Ki67 (39.6–49.8%). In line with the above,
we suggest that presence of SP in B lymphocytes of normal
appearance in hypoplastic BM becomes the additional (to nerve
endings) source of this peptide, which may stimulate other
neoplastically transformed cells to uncontrolled proliferation.
Thus, SP might accelerate the already initiated development of
leukaemia.95 The origin of leukaemia, however, seems to be
independent of SP expression.96 The expression of SP in
apparently normal BM lymphocytes before their neoplastic
transformation could not predict death of the patient; this was
related to the insufficient number of patients with neoplastic

transformation and to different chemotherapy protocols used in
the treatment of ALL and acute non-lymphocytic leukaemia. BM
hypoplasia, followed by neoplastic transformation, frequently
remains asymptomatic. Few patients receive specialist care before
the symptoms of BM proliferative disease become evident. In
these few patients the diagnosis of BM hypoplasia leads to
consecutive check-ups, in the course of which immunocytochem-
ical analysis of cellular inducers of differentiation on the surface of
BM cells may provide a simple screening test, pointing to the
potential trend of evolution of the lesion.

Solid tumours: neuroblastoma, breast cancer
Neuroblastoma is the third most common paediatric malig-
nancy developing from neoplastically transformed ganglionic
cells in the peripheral nervous system.97 SP, together with other
neuroendocrine markers such as neuropeptide Y, vasoactive
intestinal peptide, somatostatin, and corticotrophin-releasing
hormone are commonly expressed in ganglionic cells as well as
in ganglioneuroblastoma samples98 or metastatic cells in bone
marrow.99 100 Human neuroblastoma cell lines (SY5Y and
CHP212) were found to express TAC1 and the genes for NK-
1R and NK-2R, at the levels of both mRNA and protein.101 TAC1
and NK receptors genes were also important for neuroblastoma
cell proliferation and ability to establish metastatic foci in bone
marrow.101 The NK-1R deficient neuroblastoma cells did not
proliferate when they were co-cultured with bone marrow
stroma, which suggests that NK-1R signalling is important for
the survival of neuroblastoma cells in the bone marrow.101 It
must be emphasised that expression of TAC1 and the genes for
NK-Rs is also a common event in other neuroblastoma
endocrine-associated neoplasms such as breast cancer.102 103

Breast cancer is the most common malignant disease and the
second leading cause of cancer mortality in women.104

Compared to normal mammary epithelial cells and benign
breast biopsy specimens, several breast cancer cell lines have
shown increased expression of TAC1 and NK-Rs.101 Considering
that TAC1 peptides are haematopoietic modulators, the auto-
crine expression in breast cancer cells might explain their early
integration in the bone marrow which is a preferred site of
metastasis.105 Moreover, bone marrow metastases of breast
cancer correlate with poor prognosis and it is highly probable
that metastatic cells settle in the bone marrow long before
clinical detection of the tumour.105 Studies by Rao et al showed
that normal non-tumourigenic breast cells are not able to
survive when co-cultured with bone marrow stroma.106 This
situation could be however be reversed when the above
mentioned breast cells were genetically engineered to express
TAC1. However, suppression of TAC1 in breast cancer cells
limited their malignancy and affected the process of bone
marrow colonisation in knock-out mice.106 Moreover, SP has an
established stimulatory effect on the migration and metastato-
genic phenotype in collagen matrix of MDA-MB-468, the
human oestrogen receptor-negative breast carcinoma cell line;
these effects can be prevented by certain NK-1R antagonists.107

In this mechanism, SP is believed to up-regulate expression of
a2 integrin (an essential adhesion receptor for collagen in
migration), and down-regulate gelsolin (the tumour suppressor
agent).107 It is also possible that its total effect could be
augmented by the potent role of SP in the initiation of
angiogenesis.108

In line with the above, SP must be regarded not only as a
growth factor in different tumour cells, but also as an
regulating agent, promoting formation of metastases in bone
marrow and impeding the physiological haematopoiesis. It
must be emphasised that a similar mechanism involving SP
could be also utilised in another cancers with a preference for
bone marrow metastases: lung, prostate, and to a lesser extent,
colon.109
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